论文标题

Dividemix:用嘈杂的标签学习为半监督的学习

DivideMix: Learning with Noisy Labels as Semi-supervised Learning

论文作者

Li, Junnan, Socher, Richard, Hoi, Steven C. H.

论文摘要

已知深层神经网络是渴望注释的。通过深层网络学习时,已经致力于降低注释成本。两个突出的方向包括通过利用未标记的数据来学习嘈杂的标签和半监督的学习。在这项工作中,我们提出了DivideMix,这是一个通过利用半监督学习技术来学习嘈杂标签的新型框架。尤其是,DivideMix使用混合模型模拟样本损失分布,将训练数据动态分为带有干净样品的标签集和带有嘈杂样品的未标记的设置,并以半诉讼的方式对标记和未标记的数据进行训练。为了避免确认偏见,我们同时训练两个差异网络,每个网络在其中使用来自另一个网络的数据集划分。在半监督的训练阶段,我们通过分别在标签和未标记的样品上进行标签共同翻新和标签来改善混合策略。多个基准数据集的实验证明了对最新方法的实质性改进。代码可从https://github.com/lijunnan1992/dividemix获得。

Deep neural networks are known to be annotation-hungry. Numerous efforts have been devoted to reducing the annotation cost when learning with deep networks. Two prominent directions include learning with noisy labels and semi-supervised learning by exploiting unlabeled data. In this work, we propose DivideMix, a novel framework for learning with noisy labels by leveraging semi-supervised learning techniques. In particular, DivideMix models the per-sample loss distribution with a mixture model to dynamically divide the training data into a labeled set with clean samples and an unlabeled set with noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid confirmation bias, we simultaneously train two diverged networks where each network uses the dataset division from the other network. During the semi-supervised training phase, we improve the MixMatch strategy by performing label co-refinement and label co-guessing on labeled and unlabeled samples, respectively. Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods. Code is available at https://github.com/LiJunnan1992/DivideMix .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源