论文标题

关于电缆结的隧道数量及其同伴

On tunnel numbers of a cable knot and its companion

论文作者

Wang, Junhua, Zou, Yanqing

论文摘要

令$ k $为$ s^{3} $和$ t(k)$的隧道号码的非平凡结。对于任何$(p \ geq 2,q)$ - 在$ s^{3} $的$ k $ in $ k $ in $ s^{3} $中的斜坡上的斜率,由$ k^{\ star} $表示,这是$ s^{3} $的非平凡的电缆结。尽管$ t(k^{\ star})\ leq t(k)+1 $,但第1节中的示例1.1表明,在某些情况下,$ t(k^{\ star})\ leq t(k)$。因此,很有趣的是知道$ t(k^{\ star})= t(k)+1 $。 使用了一些组合技术后,我们证明(1)对于任何非平凡的电缆结$ k^{\ star} $及其伴侣$ k $,$ t(k^{\ star})\ geq t(k)$; (2)如果$ k $承认高距离heegaard拆分或$ p/q $远离福利图中的固定子集,则$ t(k^{\ star})= t(k)+1 $。使用第二个结论,我们构建了一个卫星结及其伴侣,以使其隧道数量之间的差异很大。

Let $K$ be a nontrivial knot in $S^{3}$ and $t(K)$ its tunnel number. For any $(p\geq 2,q)$-slope in the torus boundary of a closed regular neighborhood of $ K$ in $S^{3}$, denoted by $K^{\star}$, it is a nontrivial cable knot in $S^{3}$. Though $t(K^{\star})\leq t(K)+1$, Example 1.1 in Section 1 shows that in some case, $ t(K^{\star})\leq t(K)$. So it is interesting to know when $t(K^{\star})= t(K)+1$. After using some combinatorial techniques, we prove that (1) for any nontrivial cable knot $K^{\star}$ and its companion $K$, $t(K^{\star})\geq t(K)$; (2) if either $K$ admits a high distance Heegaard splitting or $p/q$ is far away from a fixed subset in the Farey graph, then $t(K^{\star})= t(K)+1$. Using the second conclusion, we construct a satellite knot and its companion so that the difference between their tunnel numbers is arbitrary large.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源