论文标题
绝热丝的引力不稳定
The Gravitational Instability of Adiabatic Filaments
论文作者
论文摘要
丝状结构或材料的长而狭窄的流是在许多天文学领域中出现的。在这里,我们通过对绝热和多面体流体圆柱的本征性分析进行了特征分析来研究这种丝的稳定性,这些圆柱是球形多层的圆柱类似物。我们表明,这些气缸在重力上是不稳定的,沿着圆柱体的轴扰动,临界波数$ k _ {\ rm crit} \ simeq几个$,其中$ k _ {\ rm crit} $是相对于缸体半径测量的。在此关键的波数扰动下面,随着$ \ propto e^{σ_{\ rm u}τ} $的增长,其中$τ$是相对于圆柱体直径的声音交叉时间的时间,我们得出了生长速度$σ__{_ {\ rm u} $作为WaveNumberberberberberberberberberberberberberberberberberberberberberberberberberberberberberberberberberber的函数。我们发现有最大增长率$σ_{\ rm max} \ sim 1 $,以特定的aveNumber $ k _ {\ rm max} \ sim 1 $发生,我们得出了增长速率$σ_{\ rm max} $ and the waveenumbers $ k _}绝热指数。在一定程度上可以将丝状结构近似为绝热且类似于流体,我们的结果表明,这些丝是不稳定的,而无需吸引磁场或外部培养基。此外,从这种丝的不稳定性中凝结的物体通过首选的长度尺度分开,在首选的时间尺度上形成,并具有首选的质量尺度。
Filamentary structures, or long and narrow streams of material, arise in many areas of astronomy. Here we investigate the stability of such filaments by performing an eigenmode analysis of adiabatic and polytropic fluid cylinders, which are the cylindrical analog of spherical polytropes. We show that these cylinders are gravitationally unstable to perturbations along the axis of the cylinder below a critical wavenumber $k_{\rm crit} \simeq few$, where $k_{\rm crit}$ is measured relative to the radius of the cylinder. Below this critical wavenumber perturbations grow as $\propto e^{σ_{\rm u}τ}$, where $τ$ is time relative to the sound crossing time across the diameter of the cylinder, and we derive the growth rate $σ_{\rm u}$ as a function of wavenumber. We find that there is a maximum growth rate $σ_{\rm max} \sim 1$ that occurs at a specific wavenumber $k_{\rm max} \sim 1$, and we derive the growth rate $σ_{\rm max}$ and the wavenumbers $k_{\rm max}$ and $k_{\rm crit}$ for a range of adiabatic indices. To the extent that filamentary structures can be approximated as adiabatic and fluid-like, our results imply that these filaments are unstable without the need to appeal to magnetic fields or external media. Further, the objects that condense out of the instability of such filaments are separated by a preferred length scale, form over a preferred timescale, and possess a preferred mass scale.