论文标题
障碍物散射的相对痕量公式
A relative trace formula for obstacle scattering
论文作者
论文摘要
我们认为,$ \ mathbb {r}^d $在$ d \ geq 2 $中散射几个障碍物的情况。在此设置中,带有DIRICHLET边界条件的Laplace运算符$δ$的绝对连续部分和免费的Laplace操作员$Δ_0$是单位等效的。对于足够快速衰减的合适函数,我们有差异$ g(δ)-g(δ_0)$是痕迹级操作员,其痕迹由角林光谱移位函数描述。在本文中,我们研究了对痕量(因此以及孔光谱函数)的贡献,这些效果是由相对于障碍完全分离的设置组装的几个障碍而产生的。在两个障碍的情况下,我们考虑了通过仅在一个对象上强加Dirichlet边界条件而获得的Laplace操作员$Δ_1$和$Δ_2$。在这种情况下,我们的主要结果指出,然后$ g(δ)-g(δ_1)-g(δ_2) + g(δ_0)$是用于更大类函数(包括多项式增长功能)的跟踪类操作员,并且该痕迹仍然可以通过Birman -Krein -Krein公式的修改来计算。如果$ g(x)= x^\ frac {1} {2} $相对跟踪作为物理含义是无质量标量场的真空能量,并且可以作为涉及边界层运算符的积分表达。这种积分已在物理文献中使用非符合路径积分衍生而得出,我们的公式既提供了严格的理由也提供了概括。
We consider the case of scattering of several obstacles in $\mathbb{R}^d$ for $d \geq 2$. In this setting the absolutely continuous part of the Laplace operator $Δ$ with Dirichlet boundary conditions and the free Laplace operator $Δ_0$ are unitarily equivalent. For suitable functions that decay sufficiently fast we have that the difference $g(Δ)-g(Δ_0)$ is a trace-class operator and its trace is described by the Krein spectral shift function. In this paper we study the contribution to the trace (and hence the Krein spectral shift function) that arises from assembling several obstacles relative to a setting where the obstacles are completely separated. In the case of two obstacles we consider the Laplace operators $Δ_1$ and $Δ_2$ obtained by imposing Dirichlet boundary conditions only on one of the objects. Our main result in this case states that then $g(Δ) - g(Δ_1) - g(Δ_2) + g(Δ_0)$ is a trace class operator for a much larger class of functions (including functions of polynomial growth) and that this trace may still be computed by a modification of the Birman-Krein formula. In case $g(x)=x^\frac{1}{2}$ the relative trace has a physical meaning as the vacuum energy of the massless scalar field and is expressible as an integral involving boundary layer operators. Such integrals have been derived in the physics literature using non-rigorous path integral derivations and our formula provides both a rigorous justification as well as a generalisation.