论文标题

弹性分数非局部模型的几何非线性响应

Geometrically Nonlinear Response of a Fractional-Order Nonlocal Model of Elasticity

论文作者

Sidhardh, Sai, Patnaik, Sansit, Semperlotti, Fabio

论文摘要

这项研究介绍了Euler-Bernoulli束的几何非线性和分数非定位模型的分析和有限元公式。 Euler-Bernoulli束中的有限非局部菌株是从框架不变和尺寸一致的分数(非局部)连续体配方中获得的。有限的分数应变理论提供了一个正定的确定配方,从而产生了数学良好的配方,该配方在载荷和边界条件上是一致的。使用变异原理获得了几何非线性和非局部Euler-Bernoulli束的管理方程和相应的边界条件。此外,开发了分数阶系统的非线性有限元模型,以实现全差异非线性统计方程的数值解决方案。经过基准问题进行彻底验证后,分数有限元模型(F-FEM)用于研究非局部光束的几何非线性响应,但受各种载荷和边界条件的约束。尽管在1D光束的上下文中呈现,但这种非线性F-FEM公式可以扩展到更高维的分数边界值问题。

This study presents the analytical and finite element formulation of a geometrically nonlinear and fractional-order nonlocal model of an Euler-Bernoulli beam. The finite nonlocal strains in the Euler-Bernoulli beam are obtained from a frame-invariant and dimensionally consistent fractional-order (nonlocal) continuum formulation. The finite fractional strain theory provides a positive definite formulation that results in a mathematically well-posed formulation which is consistent across loading and boundary conditions. The governing equations and the corresponding boundary conditions of the geometrically nonlinear and nonlocal Euler-Bernoulli beam are obtained using variational principles. Further, a nonlinear finite element model for the fractional-order system is developed in order to achieve the numerical solution of the integro-differential nonlinear governing equations. Following a thorough validation with benchmark problems, the fractional finite element model (f-FEM) is used to study the geometrically nonlinear response of a nonlocal beam subject to various loading and boundary conditions. Although presented in the context of a 1D beam, this nonlinear f-FEM formulation can be extended to higher dimensional fractional-order boundary value problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源