论文标题

从深度学习的Sentinel-1 SAR中检测湖冰

Lake Ice Detection from Sentinel-1 SAR with Deep Learning

论文作者

Tom, Manu, Aguilar, Roberto, Imhof, Pascal, Leinss, Silvan, Baltsavias, Emmanuel, Schindler, Konrad

论文摘要

作为基本气候变量(ECV)湖泊的一部分,ICE是监测气候变化和全球变暖的重要指标。湖冰覆盖的时空范围以及关键物候事件(例如冻结和分裂)的时机提供了有关当地和全球气候的重要线索。我们根据使用深神经网络对Sentinel-1合成孔径(SAR)数据的自动分析提出了湖冰监测系统。在先前使用光学卫星图像进行湖冰监测的研究中,频繁的云覆盖是一个主要限制因素,由于微波传感器可以穿透云层并观察湖泊,无论天气和照明条件如何,我们都可以克服。我们将ICE检测作为两类(冷冻,非冷冻)语义分割问题,并使用最先进的深卷积网络(CNN)解决它。我们报告了两个冬季(2016-17和2017-18)和瑞士三个高山湖泊的结果。所提出的模型达到平均得分> 90%,即使在最困难的湖泊中,平均得分> 90%。此外,我们进行了交叉验证测试,并表明我们的算法在看不见的湖泊和冬季都很好地概括了。

Lake ice, as part of the Essential Climate Variable (ECV) lakes, is an important indicator to monitor climate change and global warming. The spatio-temporal extent of lake ice cover, along with the timings of key phenological events such as freeze-up and break-up, provide important cues about the local and global climate. We present a lake ice monitoring system based on the automatic analysis of Sentinel-1 Synthetic Aperture Radar (SAR) data with a deep neural network. In previous studies that used optical satellite imagery for lake ice monitoring, frequent cloud cover was a main limiting factor, which we overcome thanks to the ability of microwave sensors to penetrate clouds and observe the lakes regardless of the weather and illumination conditions. We cast ice detection as a two class (frozen, non-frozen) semantic segmentation problem and solve it using a state-of-the-art deep convolutional network (CNN). We report results on two winters ( 2016 - 17 and 2017 - 18 ) and three alpine lakes in Switzerland. The proposed model reaches mean Intersection-over-Union (mIoU) scores >90% on average, and >84% even for the most difficult lake. Additionally, we perform cross-validation tests and show that our algorithm generalises well across unseen lakes and winters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源