论文标题
根据相关压力,针对MHD方程弱解决方案的新规则性标准
New Regularity Criteria for Weak Solutions to the MHD Equations in Terms of an Associated Pressure
论文作者
论文摘要
我们证明,如果$ 0 <t_0 <t \ leq \ infty $,$(\ mathbf {u},\ mathbf {b},p),p)$是MHD方程的合适解决方案,则$ \ Mathbb {r}^3 \ times(0,t)$ \ mathbb {r} l^{\ infty}(0,t_0; \,l^{3/2}(\ Mathbb {r}^3))$或$ \ m nathcal {f}_γ((((| \ Mathbf {U} | l^{\ infty}(0,t_0; \,l^{3/2}(\ Mathbb {r}^3))$对于某些$γ> 0 $,其中$ \ nathcal {f}_γ(s)= s \ s = s \ s = s \,[分别表示负极和非负部分,然后说明解决方案$(\ Mathbf {u},\ Mathbf {B},P),P)$在$ \ Mathbb {r}^3 \ times(0,T_0] $中没有单数点。
We prove that if $0<T_0<T\leq\infty$, $(\mathbf{u},\mathbf{b},p)$ is a suitable weak solution of the MHD equations in $\mathbb{R}^3\times(0,T)$ and either $\mathcal{F}_γ(p_-)\in L^{\infty}(0,T_0;\, L^{3/2}(\mathbb{R}^3))$ or $\mathcal{F}_γ((|\mathbf{u}|^2+ |\mathbf{b}|^2+2p)_+)\in L^{\infty}(0,T_0;\, L^{3/2}(\mathbb{R}^3))$ for some $γ>0$, where $\mathcal{F}_γ(s)=s\, [\ln{}(1+ s)]^{1+γ}$ and the subscripts "$-$" and "$+$" denote the negative and the nonnegative part, respectively, then the solution $(\mathbf{u},\mathbf{b},p)$ has no singular points in $\mathbb{R}^3\times(0,T_0]$.