论文标题

学习组的结构和动态环境的分离表示

Learning Group Structure and Disentangled Representations of Dynamical Environments

论文作者

Quessard, Robin, Barrett, Thomas D., Clements, William R.

论文摘要

学习解开表示是有效地发现和建模环境的基础结构的关键步骤。在自然科学中,物理学通过描述宇宙的对称性保存转换来取得巨大的成功。在这种形式主义的启发下,我们提出了一个框架,建立在群体代表理论的基础上,以学习围绕产生其演变的转换的动态环境的学习表示。在实验上,我们学习了明确的对称环境的结构,而无需从顺序相互作用产生的观察数据监督。我们进一步介绍了直观的分离正规化,以确保学会表示的解释性。我们表明,我们的方法可以实现准确的长马预测,并证明了预测质量与潜在空间中的分离之间的相关性。

Learning disentangled representations is a key step towards effectively discovering and modelling the underlying structure of environments. In the natural sciences, physics has found great success by describing the universe in terms of symmetry preserving transformations. Inspired by this formalism, we propose a framework, built upon the theory of group representation, for learning representations of a dynamical environment structured around the transformations that generate its evolution. Experimentally, we learn the structure of explicitly symmetric environments without supervision from observational data generated by sequential interactions. We further introduce an intuitive disentanglement regularisation to ensure the interpretability of the learnt representations. We show that our method enables accurate long-horizon predictions, and demonstrate a correlation between the quality of predictions and disentanglement in the latent space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源