论文标题
在组合市场中动态定价的力量和限制
On the Power and Limits of Dynamic Pricing in Combinatorial Markets
论文作者
论文摘要
我们研究组合市场最佳动态定价的功率和限制;即导致最佳社会福利的动态定价。 Cohen-Addad等人的先前工作。 [EC'16]证明了单位需求购买者的最佳动态价格存在,并展示了一个市场估值的市场,但没有承认这种价格。但是,找到最佳动态价格的市场前沿(即估值功能)仍然是一个开放的问题。在这项工作中,我们建立了积极和负面的结果,以缩小现有差距。 从积极的一面来看,我们为处理单位需求估值以外的市场提供了工具。特别是,我们表征了多点市场中所有最佳分配。这种表征使我们可以根据它们在实现最佳性方面所扮演的角色将项目分为等效类。使用这些工具,我们为多达$ 3 $的多个需求购买者提供了多个合理的最佳动态定价算法。 在负面的一面,我们建立了一个最大域定理,表明对于每个非替代估值,都有单位按需估值,以使它们产生一个不承认最佳动态定价的市场。该结果是Walrasian平衡的Gul和Stacchetti [Jet'99]的动态定价等效于开创性结构域定理。杨[Jet'17]在其原始证明中发现了一个错误,并建立了其最大域定理的不同,无与伦比的版本。在通往我们最大域定理的最佳动态定价的途中,我们提供了Gul和Stacchetti原始定理的第一个完整证明。
We study the power and limits of optimal dynamic pricing in combinatorial markets; i.e., dynamic pricing that leads to optimal social welfare. Previous work by Cohen-Addad et al. [EC'16] demonstrated the existence of optimal dynamic prices for unit-demand buyers, and showed a market with coverage valuations that admits no such prices. However, finding the frontier of markets (i.e., valuation functions) that admit optimal dynamic prices remains an open problem. In this work we establish positive and negative results that narrow the existing gap. On the positive side, we provide tools for handling markets beyond unit-demand valuations. In particular, we characterize all optimal allocations in multi-demand markets. This characterization allows us to partition the items into equivalence classes according to the role they play in achieving optimality. Using these tools, we provide a poly-time optimal dynamic pricing algorithm for up to $3$ multi-demand buyers. On the negative side, we establish a maximal domain theorem, showing that for every non-gross substitutes valuation, there exist unit-demand valuations such that adding them yields a market that does not admit an optimal dynamic pricing. This result is the dynamic pricing equivalent of the seminal maximal domain theorem by Gul and Stacchetti [JET'99] for Walrasian equilibrium. Yang [JET'17] discovered an error in their original proof, and established a different, incomparable version of their maximal domain theorem. En route to our maximal domain theorem for optimal dynamic pricing, we provide the first complete proof of the original theorem by Gul and Stacchetti.