论文标题
离散时间taseps的KPZ固定点
The KPZ fixed point for discrete time TASEPs
论文作者
论文摘要
我们考虑了具有几何和伯努利随机跳跃概率的两个版本的离散时间完全不对称的简单排除过程(Taseps)。对于与这些和连续的时间动力学混合的过程,我们获得了具有任意初始数据的粒子位置的联合分布函数的单个弗雷霍尔姆决定因素表示。该公式是Mateski,Quastel和Remenik对最新结果的概括,使我们能够采用KPZ缩放限制。对于离散的时间几何和Bernoulli taseps,我们表明分布函数收敛到描述KPZ固定点的函数。
We consider two versions of discrete time totally asymmetric simple exclusion processes (TASEPs) with geometric and Bernoulli random hopping probabilities. For the process mixed with these and continuous time dynamics, we obtain a single Fredholm determinant representation for the joint distribution function of particle positions with arbitrary initial data. This formula is a generalization of the recent result by Mateski, Quastel and Remenik and allows us to take the KPZ scaling limit. For both the discrete time geometric and Bernoulli TASEPs, we show that the distribution function converges to the one describing the KPZ fixed point.