论文标题
残留的持续学习
Residual Continual Learning
论文作者
论文摘要
我们提出了一种新型的持续学习方法,称为残留持续学习(RESCL)。我们的方法可以防止在多个任务的顺序学习中灾难性的遗忘现象,而没有任何源任务信息。通过线性将原始网络的每一层和微调网络线性结合来重新参数化网络参数;因此,网络的大小根本不会增加。为了将所提出的方法应用于通用卷积神经网络,还考虑了批准层的效果。通过利用剩余学习的重新聚体化和特殊的重量衰减损失,可以有效控制源和目标性能之间的权衡。所提出的方法在各种持续学习场景中表现出最先进的表现。
We propose a novel continual learning method called Residual Continual Learning (ResCL). Our method can prevent the catastrophic forgetting phenomenon in sequential learning of multiple tasks, without any source task information except the original network. ResCL reparameterizes network parameters by linearly combining each layer of the original network and a fine-tuned network; therefore, the size of the network does not increase at all. To apply the proposed method to general convolutional neural networks, the effects of batch normalization layers are also considered. By utilizing residual-learning-like reparameterization and a special weight decay loss, the trade-off between source and target performance is effectively controlled. The proposed method exhibits state-of-the-art performance in various continual learning scenarios.