论文标题
在无模型的深入学习中调查简单的对象表示
Investigating Simple Object Representations in Model-Free Deep Reinforcement Learning
论文作者
论文摘要
我们探讨了使用简单对象表示的增强最先进的无模型深钢筋算法的好处。遵循湖等人提出的冻伤挑战。 (2017年),我们将对象表示视为当前强化学习者缺乏的关键认知能力。我们发现,提供简单的功能设计的对象表示,提供彩虹模型(Hessel等人,2018),从ATARI 2600中大大提高了其在Frostbite游戏中的性能。然后,我们分析了不同类型对象的表示的相对贡献,并确定这些表示的在哪里有影响力,并在这些表示方面确定了这些表现最有效,并在这些表现方面有助于对新颖的位置进行一般化的一般性化。
We explore the benefits of augmenting state-of-the-art model-free deep reinforcement algorithms with simple object representations. Following the Frostbite challenge posited by Lake et al. (2017), we identify object representations as a critical cognitive capacity lacking from current reinforcement learning agents. We discover that providing the Rainbow model (Hessel et al.,2018) with simple, feature-engineered object representations substantially boosts its performance on the Frostbite game from Atari 2600. We then analyze the relative contributions of the representations of different types of objects, identify environment states where these representations are most impactful, and examine how these representations aid in generalizing to novel situations.