论文标题
有监督的短语结合嵌入
Supervised Phrase-boundary Embeddings
论文作者
论文摘要
我们提出了一种称为SPHRASE的新单词嵌入模型,该模型包含了监督的短语信息。我们的方法通过确保短语中的所有目标单词都具有完全相同的上下文来修改传统单词嵌入。我们证明,将这些信息包括在上下文窗口中会产生用于固有评估任务和下游外部任务的出色嵌入。
We propose a new word embedding model, called SPhrase, that incorporates supervised phrase information. Our method modifies traditional word embeddings by ensuring that all target words in a phrase have exactly the same context. We demonstrate that including this information within a context window produces superior embeddings for both intrinsic evaluation tasks and downstream extrinsic tasks.