论文标题

$δ_ { - } Ziti $方法的扩展单位球:数值集成,泊松问题的分辨率和传热

Extension of $δ_{-}ziti$ method in the unit ball: Numerical integration, resolution of Poisson's problem and Heat transfer

论文作者

Malek, Rajae, Ziti, Cherif

论文摘要

受伽勒金(Galerkin)和特定方法的启发,在笛卡尔案中召回了一种新的近似方法。在本文中,我们特别是通过构建此方法感兴趣的是,当考虑域是二维球时,将此工作扩展到几个维度。我们以非常快速的方式减少了计算泊松和热问题(椭圆形和抛物线PDE)的积分和数值解决方案的迭代次数。

Inspired by the Galerkin and particular method, a new approximation approach is recalled in the Cartesian case. In this paper, we are interested specially by constructing this method, when the domain of consideration is a two dimensional ball, to extend this work to the several dimension. We reduce the number of iterations to calculate integrals and numerical solution of Poisson and the Heat problems (elliptic nd parabolic PDEs), in a very fast way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源