论文标题
从实验中学习量子系统的模型
Learning models of quantum systems from experiments
论文作者
论文摘要
相互作用的量子颗粒的孤立系统由哈密顿操作员描述。哈密顿的模型基于整个科学和工业的物理和化学过程的研究和分析,因此它们对它们所代表的系统至关重要。但是,从实验数据中制定和测试量子系统模型的制定和测试很困难,因为无法直接观察量子系统的相互作用。在这里,我们提出并展示了一种使用无监督的机器学习从实验中检索哈密顿模型的方法。我们通过与自旋浴环境相互作用的氮呈相互作用的电子自旋测试我们的方法,并从数值上找到最高86%的成功率。通过构建能够学习科学的代理,恢复有意义的表示,我们可以进一步了解量子系统的物理。
An isolated system of interacting quantum particles is described by a Hamiltonian operator. Hamiltonian models underpin the study and analysis of physical and chemical processes throughout science and industry, so it is crucial they are faithful to the system they represent. However, formulating and testing Hamiltonian models of quantum systems from experimental data is difficult because it is impossible to directly observe which interactions the quantum system is subject to. Here, we propose and demonstrate an approach to retrieving a Hamiltonian model from experiments, using unsupervised machine learning. We test our methods experimentally on an electron spin in a nitrogen-vacancy interacting with its spin bath environment, and numerically, finding success rates up to 86%. By building agents capable of learning science, which recover meaningful representations, we can gain further insight on the physics of quantum systems.