论文标题
Soergel类别的衍生痕迹
Derived traces of Soergel categories
论文作者
论文摘要
我们研究了(单型)DG类别的两种分类痕迹,对Soergel双模型类别特别感兴趣。首先,我们明确计算了在任意类型中的soergel双模型类别的通常的Hochschild同源性或衍生的垂直轨迹。 Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type A. As an application we obtain a derived annular Khovanov-Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus.
We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type A. As an application we obtain a derived annular Khovanov-Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus.