论文标题

查询2box:使用框嵌入在矢量空间中的知识图上的推理

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings

论文作者

Ren, Hongyu, Hu, Weihua, Leskovec, Jure

论文摘要

在大规模不完整的知识图(kgs)上回答复杂的逻辑查询是一项基本而又具有挑战性的任务。最近,解决此问题的一种有希望的方法是将KG实体以及查询嵌入到矢量空间中,以使回答查询的实体嵌入到查询附近。但是,先前的工作模型将矢量空间中的单个点查询,这是有问题的,因为复杂的查询代表了其潜在的大量答案实体集,但是目前尚不清楚如何将这种集合表示为单个点。此外,先前的工作只能处理使用连词($ \ wedge $)和存在量词($ \已有$)的查询。使用逻辑分离($ \ vee $)处理查询仍然是一个开放的问题。在这里,我们提出了Query2Box,这是一个基于嵌入式的框架,用于通过$ \ wedge $,$ \ vee $,$ \ \ \ \ \ \ ocerators的$ \ wedge $,$ \ \ ocerators的框架进行推理。我们的主要见解是,查询可以嵌入为框(即超矩形),其中框内的一组点对应于查询的一组答案实体。我们表明,连词可以自然地表示为框的交叉点,也证明了负面的结果,即处理分离需要嵌入与KG实体数量成正比的尺寸。但是,我们表明,通过将查询转换为脱节的正常形式,query2box能够以$ \ wedge $,$ \ vee $,$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \的存在。我们证明了Query2box在三个大公里的有效性,并表明Query2box比最高的现状相对改善了25%。

Answering complex logical queries on large-scale incomplete knowledge graphs (KGs) is a fundamental yet challenging task. Recently, a promising approach to this problem has been to embed KG entities as well as the query into a vector space such that entities that answer the query are embedded close to the query. However, prior work models queries as single points in the vector space, which is problematic because a complex query represents a potentially large set of its answer entities, but it is unclear how such a set can be represented as a single point. Furthermore, prior work can only handle queries that use conjunctions ($\wedge$) and existential quantifiers ($\exists$). Handling queries with logical disjunctions ($\vee$) remains an open problem. Here we propose query2box, an embedding-based framework for reasoning over arbitrary queries with $\wedge$, $\vee$, and $\exists$ operators in massive and incomplete KGs. Our main insight is that queries can be embedded as boxes (i.e., hyper-rectangles), where a set of points inside the box corresponds to a set of answer entities of the query. We show that conjunctions can be naturally represented as intersections of boxes and also prove a negative result that handling disjunctions would require embedding with dimension proportional to the number of KG entities. However, we show that by transforming queries into a Disjunctive Normal Form, query2box is capable of handling arbitrary logical queries with $\wedge$, $\vee$, $\exists$ in a scalable manner. We demonstrate the effectiveness of query2box on three large KGs and show that query2box achieves up to 25% relative improvement over the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源