论文标题

腹部CT图像中的肝分割通过自动膜片神经网络和自我监视的轮廓注意

Liver Segmentation in Abdominal CT Images via Auto-Context Neural Network and Self-Supervised Contour Attention

论文作者

Chung, Minyoung, Lee, Jingyu, Lee, Jeongjin, Shin, Yeong-Gil

论文摘要

肝脏的准确图像分割是一个具有挑战性的问题,因为其形状较大和界限不明确。尽管完全卷积神经网络(CNN)的应用显示出突破性的结果,但有限的研究集中在概括的性能上。在这项研究中,我们在腹部计算机断层扫描(CT)图像上引入了CNN,该CNN显示出高概括性能和准确性。为了提高概括性能,我们最初在单个CNN中提出了一种自动封闭式算法。拟议的自动秘密神经网络利用有效的高级残差估计来获得形状。相同的双路径有效地训练,以代表相互互补特征,以进行肝脏的准确后验分析。此外,我们通过采用自我监管的轮廓方案来扩展我们的网络。我们通过对地面真相轮廓进行惩罚,以将更多的轮廓关注于故障来训练稀疏的轮廓功能。实验结果表明,与最先进的网络相比,提出的网络通过降低了Hausdorff距离的10.31%而产生的准确性更好。我们使用180个腹部CT图像进行训练和验证。提出了两倍的交叉验证,以与最新的神经网络进行比较。进行了新型的多个N倍交叉验证,以验证概括的性能。提出的网络在网络中表现出最佳的概括性能。此外,我们提出了一系列消融实验,这些实验可全面地支持基本概念的重要性。

Accurate image segmentation of the liver is a challenging problem owing to its large shape variability and unclear boundaries. Although the applications of fully convolutional neural networks (CNNs) have shown groundbreaking results, limited studies have focused on the performance of generalization. In this study, we introduce a CNN for liver segmentation on abdominal computed tomography (CT) images that shows high generalization performance and accuracy. To improve the generalization performance, we initially propose an auto-context algorithm in a single CNN. The proposed auto-context neural network exploits an effective high-level residual estimation to obtain the shape prior. Identical dual paths are effectively trained to represent mutual complementary features for an accurate posterior analysis of a liver. Further, we extend our network by employing a self-supervised contour scheme. We trained sparse contour features by penalizing the ground-truth contour to focus more contour attentions on the failures. The experimental results show that the proposed network results in better accuracy when compared to the state-of-the-art networks by reducing 10.31% of the Hausdorff distance. We used 180 abdominal CT images for training and validation. Two-fold cross-validation is presented for a comparison with the state-of-the-art neural networks. Novel multiple N-fold cross-validations are conducted to verify the performance of generalization. The proposed network showed the best generalization performance among the networks. Additionally, we present a series of ablation experiments that comprehensively support the importance of the underlying concepts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源