论文标题
用偏心重力波约束重力:投影的上限和模型选择
Constraining Gravity with Eccentric Gravitational Waves: Projected Upper Bounds and Model Selection
论文作者
论文摘要
引力波使我们能够测试高度动力学状态的一般相对性。尽管当前的观察结果与准圆形二进制文件发出的波是一致的,但偏心二进制物也可能在不久的将来使用基于地面和空间的检测器产生可检测的信号。我们在这里探索在最高$ e \ sim 0.8 $的紧凑型物体的灵感期间,如何使用源轨道偏心的一般相对性量表进行测试。我们为紧凑物体的灵感使用了新的,第三次牛顿后的偏心波形模型,该模型足够快,足以容纳贝叶斯参数估计和模型选择,并且高度准确地建模中等偏心的灵感。我们得出并纳入了布兰斯 - 迪克理论中引起的该模型的偏心校正,以及在领先的纽约后秩序中的爱因斯坦 - 迪拉塔顿 - 迪拉顿 - 高斯 - 邦网中,这表明参数化后源后形式形式的偏心扩展。我们使用Markov-Chain Monte Carlo和跨维,可逆的,马尔可夫链蒙特卡洛方法探索了这些修改理论的耦合参数的上限。我们发现预计的限制因素带有来自$ e \ sim 0.4 $的信号的限制,这比高级里戈(Advanced Ligo)在准圆形二进制方面获得的订单强。特别是,在设计灵敏度下检测到的偏心重力波应能够限制Brans-Dicke耦合参数$ω\ GTRSIM 3300 $和GAUSS-BONNET耦合参数$α^{1/2} \ listsim 0.5 \ \; {\ rm {km}} $ 90%的信心。尽管对$ω$的投影约束比其他当前约束弱,但对$α^{1/2} $的投影约束比当前的重力波强10倍。
Gravitational waves allow us to test general relativity in the highly dynamical regime. While current observations have been consistent with waves emitted by quasi-circular binaries, eccentric binaries may also produce detectable signals in the near future with ground- and space-based detectors. We here explore how tests of general relativity scale with the orbital eccentricity of the source during the inspiral of compact objects up to $e \sim 0.8$. We use a new, 3rd post-Newtonian-accurate, eccentric waveform model for the inspiral of compact objects, which is fast enough for Bayesian parameter estimation and model selection, and highly accurate for modeling moderately eccentric inspirals. We derive and incorporate the eccentric corrections to this model induced in Brans-Dicke theory and in Einstein-dilaton-Gauss-Bonnet gravity at leading post-Newtonian order, which suggest a straightforward eccentric extension of the parameterized post-Einsteinian formalism. We explore the upper limits that could be set on the coupling parameters of these modified theories through both a confidence-interval- and Bayes-factor-based approach, using a Markov-Chain Monte Carlo and a trans-dimensional, reversible-jump, Markov-Chain Monte Carlo method. We find projected constraints with signals from sources with $e \sim 0.4$ that are one order of magnitude stronger than that those obtained with quasi-circular binaries in advanced LIGO. In particular, eccentric gravitational waves detected at design sensitivity should be able to constrain the Brans-Dicke coupling parameter $ω\gtrsim 3300$ and the Gauss-Bonnet coupling parameter $α^{1/2} \lesssim 0.5 \; {\rm{km}}$ at 90% confidence. Although the projected constraint on $ω$ is weaker than other current constraints, the projected constraint on $α^{1/2}$ is 10 times stronger than the current gravitational wave bound.