论文标题

噪音接触网络中流行病分支因子的估计

Estimation of the Epidemic Branching Factor in Noisy Contact Networks

论文作者

Li, Wenrui, Sussman, Daniel L., Kolaczyk, Eric D.

论文摘要

基于网络的流行性建模中的许多基本概念都取决于分支因素,该因素捕获了网络连接性的分散感并量化整个网络的扩散率。此外,联系网络信息通常只能达到一定程度的错误。我们研究了这种错误的传播到分支因子的估计。具体而言,我们表征了网络噪声对任意真实网络观察到的分支因子的偏差和方差的影响,其中示例在稀疏,密集,同质和不均匀的网络中。此外,我们为真实的分支因子提出了一种方法估计器。我们通过模拟研究和在英国中学和法国医院观察到的估计量的实践表现。

Many fundamental concepts in network-based epidemic modeling depend on the branching factor, which captures a sense of dispersion in the network connectivity and quantifies the rate of spreading across the network. Moreover, contact network information generally is available only up to some level of error. We study the propagation of such errors to the estimation of the branching factor. Specifically, we characterize the impact of network noise on the bias and variance of the observed branching factor for arbitrary true networks, with examples in sparse, dense, homogeneous and inhomogeneous networks. In addition, we propose a method-of-moments estimator for the true branching factor. We illustrate the practical performance of our estimator through simulation studies and with contact networks observed in British secondary schools and a French hospital.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源