论文标题
$ \ mathbf {q} = 0 $ continuum dirac fermions
Bosonization of the $\mathbf{Q}=0$ continuum of Dirac Fermions
论文作者
论文摘要
我们开发了一种持续性形式主义,该形式主义非扰动地捕获对$ \ mathbf {q} = 0 $ continum的相互作用效果,而nodal fermions的激发量高于一个维度。我们的方法是用于更高维费米表面的经典照效率方案的自然扩展,其中包括$ \ mathbf {q} = 0 $中性激发,而中性激发在单波段系统中会不存在。问题降低了解决玻色子双线性哈密顿量。我们通过表明这种玻色子双线性汉密尔顿的解决方案完全等同于执行与Kadanoff-baym粒子孔传播器相关的无限的Feynman图之和,这是该方法的严格微观基础,该解决方案与Kadanoff-baym粒子孔传播器相关的无限之和,该传播源是由Hartree-Hartree-Hartree-fock近似与单个颗粒绿色绿色的功能所产生的。我们将此机械应用于与库仑相互作用的2D狄拉克式相互作用的光导率的相互作用校正,从而在弱耦合时重现了扰动重新归一化组的结果,并将其扩展到强耦合方案。
We develop a bosonization formalism that captures non-perturbatively the interaction effects on the $\mathbf{Q}=0$ continuum of excitations of nodal fermions above one dimension. Our approach is a natural extension of the classic bosonization scheme for higher dimensional Fermi surfaces to include the $\mathbf{Q}=0$ neutral excitations that would be absent in a single-band system. The problem is reduced to solving a boson bilinear Hamiltonian. We establish a rigorous microscopic footing for this approach by showing that the solution of such boson bilinear Hamiltonian is exactly equivalent to performing the infinite sum of Feynman diagrams associated with the Kadanoff-Baym particle-hole propagator that arises from the self-consistent Hartree-Fock approximation to the single particle Green's function. We apply this machinery to compute the interaction corrections to the optical conductivity of 2D Dirac Fermions with Coulomb interactions reproducing the results of perturbative renormalization group at weak coupling and extending them to the strong coupling regime.