论文标题
检测在截短的海森堡代数上的相变的缩放
Detecting scaling in phase transitions on the truncated Heisenberg algebra
论文作者
论文摘要
我们构建和分析了一个自相互作用矩阵场的相图,该矩阵场与非交通截断的海森伯格空间的曲率结合在一起。该模型以无限基质尺寸极限减少到可重新分析的Grosse-Wulkenhaar模型,并表现出纯粹的不均匀有序相。特别注意模型参数的缩放。我们还为有序相变的疾病提供了无限的矩阵尺寸限制。
We construct and analyze a phase diagram of a self-interacting matrix field coupled to curvature of the non-commutative truncated Heisenberg space. The model reduces to the renormalizable Grosse-Wulkenhaar model in an infinite matrix size limit and exhibits a purely non-commutative non-uniformly ordered phase. Particular attention is given to scaling of model's parameters. We additionally provide the infinite matrix size limit for the disordered to ordered phase transition line.