论文标题

分配到权力的等分分配和不平等现象

Equidistribution and inequalities for partitions into powers

论文作者

Ciolan, Alexandru

论文摘要

如果$ p_k(a,m,n)$表示$ n $ $ n $的分区数量,则具有与$ a $ a $ a $ modulo $ m的许多零件,然后$ p_2(0,2,n)\ sim p_2(sim p_2(n)\ sim p_2(1,2,n)$ and差异$ p_2 $ p_2($ p_2(n)) $ n,$ $由作者最近的工作证明(2020)。在本文中,我们将问题置于更广泛的框架中。通过使用Circle方法和高斯总和估计值进行分析参数,我们显示了任何$ K \ GE2的结果相同。 $通过组合参数,我们表明差异$ p_k(0,2,n)的符号 - p_k(1,2,n)$取决于较大类别的分区的奇偶校验。

If $ p_k(a,m,n) $ denotes the number of partitions of $n$ into $k$th powers with a number of parts that is congruent to $ a $ modulo $m,$ then $p_2(0,2,n)\sim p_2(1,2,n)$ and the sign of the difference $p_2(0,2,n)- p_k(1,2,n)$ alternates with the parity of $n,$ as proven by recent work of the author (2020). In this paper, we place the problem in a broader framework. By analytic arguments using the circle method and Gauss sums estimates, we show that the same results hold for any $ k\ge2. $ By combinatorial arguments, we show that the sign of the difference $p_k(0,2,n)- p_k(1,2,n)$ depends on the parity of $n$ for a larger class of partitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源