论文标题
星形群体中行星系统的动态:太阳系早期演变的各个方面
Dynamics of Planetary Systems Within Star Clusters: Aspects of the Solar System's Early Evolution
论文作者
论文摘要
大多数行星系统(包括我们自己的)出生在恒星簇中,与邻近恒星的互动可以帮助塑造系统体系结构。本文开发出一种轨道平均的形式主义,以表征集群的平均场效应以及长期恒星相遇的物理学。我们的世俗方法可以对簇环境在其组成的行星系统中的动态后果进行分析描述。我们分析了由此产生的哈密顿量的特殊情况,这些案例对应于偏心性的演变,以及耗散磁盘上的双曲线扰动。随后,我们将结果应用于太阳系的早期演变,在该太阳系中,集群的集体潜力散布了太阳系的平面,而恒星遇到的行动可以增加Kuiper带的速度分散体。我们的结果是两倍:首先,我们发现群集效应可以将太阳系的平均平面换成$ \ lysSim1°$,因此不足以解释$ψ\ of6°$ $ $。其次,我们描述了恒星飞质刺激冷古典Kuiper带的轨道分散程度的程度,并表明尽管恒星Flybys可以通过观察到的量增长冷带的倾向,但所产生的分布与数据不符。相应地,我们的计算在其出生集群中,$η\,τ\ Lessim2 \ times10^4 \,$ myr/pc $^3 $在其出生群集中的恒星数密度和停留时间的产物置于上限。
Most planetary systems -- including our own -- are born within stellar clusters, where interactions with neighboring stars can help shape the system architecture. This paper develops an orbit-averaged formalism to characterize the cluster's mean-field effects as well as the physics of long-period stellar encounters. Our secular approach allows for an analytic description of the dynamical consequences of the cluster environment on its constituent planetary systems. We analyze special cases of the resulting Hamiltonian, corresponding to eccentricity evolution driven by planar encounters, as well as hyperbolic perturbations upon dissipative disks. We subsequently apply our results to the early evolution of our solar system, where the cluster's collective potential perturbs the solar system's plane, and stellar encounters act to increase the velocity dispersion of the Kuiper belt. Our results are two-fold: first, we find that cluster effects can alter the mean plane of the solar system by $\lesssim1°$, and are thus insufficient to explain the $ψ\approx6°$ obliquity of the sun. Second, we delineate the extent to which stellar flybys excite the orbital dispersion of the cold classical Kuiper belt, and show that while stellar flybys may grow the cold belt's inclination by the observed amount, the resulting distribution is incompatible with the data. Correspondingly, our calculations place an upper limit on the product of the stellar number density and residence time of the sun in its birth cluster, $η\,τ\lesssim2\times10^4\,$Myr/pc$^3$.