论文标题

CBAG:有条件的生物医学抽象生成

CBAG: Conditional Biomedical Abstract Generation

论文作者

Sybrandt, Justin, Safro, Ilya

论文摘要

与典型的英语文本相比,生物医学研究论文使用了明显不同的语言和行话,这降低了该领域预训练的NLP模型的实用性。同时,Medline是一个生物医学摘要数据库,每年介绍了将近一百万个新文件。可以从了解这些公共可用信息的财富中受益的应用程序,例如科学写作助理,聊天机器人或描述性假设的产生系统,都需要新的以领域为中心的方法。有条件的语言模型是一种在许多此类应用中学习一些先验标准的单词概率的模型。我们提出了一个基于变压器的条件语言模型,其中具有浅编码器“条件”堆栈,以及深度“多头注意块”的深度“语言模型”堆栈。条件堆栈编码用于更改语言模型堆栈的输出概率分布的元数据。我们采样了此分布,以生成仅给定标题,预期出版年度和一组关键字的生物医学摘要。使用典型的自然语言产生指标,我们证明了这种提出的方​​法比1.5B参数GPT-2语言模型更有能力在抽象体内产生非平凡的相关实体。

Biomedical research papers use significantly different language and jargon when compared to typical English text, which reduces the utility of pre-trained NLP models in this domain. Meanwhile Medline, a database of biomedical abstracts, introduces nearly a million new documents per-year. Applications that could benefit from understanding this wealth of publicly available information, such as scientific writing assistants, chat-bots, or descriptive hypothesis generation systems, require new domain-centered approaches. A conditional language model, one that learns the probability of words given some a priori criteria, is a fundamental building block in many such applications. We propose a transformer-based conditional language model with a shallow encoder "condition" stack, and a deep "language model" stack of multi-headed attention blocks. The condition stack encodes metadata used to alter the output probability distribution of the language model stack. We sample this distribution in order to generate biomedical abstracts given only a proposed title, an intended publication year, and a set of keywords. Using typical natural language generation metrics, we demonstrate that this proposed approach is more capable of producing non-trivial relevant entities within the abstract body than the 1.5B parameter GPT-2 language model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源