论文标题

三角样本:使用本地差异隐私处理丢失数据的双向采样

BiSample: Bidirectional Sampling for Handling Missing Data with Local Differential Privacy

论文作者

Sun, Lin, Ye, Xiaojun, Zhao, Jun, Lu, Chenhui, Yang, Mengmeng

论文摘要

当地差异隐私(LDP)最近引起了很多兴趣。在现有的有利可形保证金保证的现有协议中,用户在将其共享与聚合器共享之前对其数据进行编码和删除。但是,通常,由于对不同问题的偏好不同,用户不希望回答所有问题,这会导致数据丢失或数据质量丢失。在本文中,我们展示了一种新的方法,可以考虑用户的隐私偏好,以应对数据扰动的挑战。具体而言,我们首先提出三角样本:在LDP框架中的双向采样技术值扰动。然后,我们将三顺式机制与用户的隐私偏好相结合,以丢失数据扰动。一组数据集的理论分析和实验证实了所提出的机制的有效性。

Local differential privacy (LDP) has received much interest recently. In existing protocols with LDP guarantees, a user encodes and perturbs his data locally before sharing it to the aggregator. In common practice, however, users would prefer not to answer all the questions due to different privacy-preserving preferences for different questions, which leads to data missing or the loss of data quality. In this paper, we demonstrate a new approach for addressing the challenges of data perturbation with consideration of users' privacy preferences. Specifically, we first propose BiSample: a bidirectional sampling technique value perturbation in the framework of LDP. Then we combine the BiSample mechanism with users' privacy preferences for missing data perturbation. Theoretical analysis and experiments on a set of datasets confirm the effectiveness of the proposed mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源