论文标题

包含一个集团的图的嵌入和旋转尺寸

Embedding and the rotational dimension of a graph containing a clique

论文作者

Gomyou, Takumi

论文摘要

旋转尺寸是与欧几里得空间的尺寸相关的次要单调图不变性,该空间包含与Gourring,Helmberg和Wappler引入的与图形Laplacian的第一个非零特征值相对应的光谱嵌入。在本文中,我们研究了包含大图的图形的旋转尺寸。完整的图的特征是其旋转维度。可以获得串好图,同时保持旋转尺寸恒定。

The rotational dimension is a minor monotone graph invariant related to the dimension of an Euclidean space containing a spectral embedding corresponding to the first nonzero eigenvalue of the graph Laplacian, which is introduced by Göring, Helmberg and Wappler. In this paper, we study rotational dimensions of graphs which contain large complete graphs. The complete graph is characterized by its rotational dimension. It will be a obtained that a chordal graph may be made large while keeping the rotational dimension constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源