论文标题

endol2H:胶囊内窥镜的深层超分辨率

EndoL2H: Deep Super-Resolution for Capsule Endoscopy

论文作者

Almalioglu, Yasin, Ozyoruk, Kutsev Bengisu, Gokce, Abdulkadir, Incetan, Kagan, Gokceler, Guliz Irem, Simsek, Muhammed Ali, Ararat, Kivanc, Chen, Richard J., Durr, Nicholas J., Mahmood, Faisal, Turan, Mehmet

论文摘要

尽管无线胶囊内窥镜检查是诊断和评估小肠疾病的首选方式,但较差的摄像头分辨率对于主观诊断和自动化诊断都是一个很大的限制。分辨率增强的内窥镜检查已显示可提高常规内窥镜检查的腺瘤检测率,并且对于胶囊内窥镜检查可能会做同样的事情。在这项工作中,我们建议并定量验证一个新型框架,以从低到高分辨率的内窥镜图像中学习映射。我们将条件对抗网络与空间注意力区块相结合,以分别提高分辨率,分别为8倍,10x,12x。进行定量和定性研究表明,endol2h比最先进的深层超分辨率方法DBPN,RCAN和SRGAN具有优势。由30家胃肠病医生进行定性评估并确认该方法的临床相关性的MOS测试。 Endol2H通常适用于任何内窥镜胶囊系统,并且有可能改善诊断和更好的线束计算方法,以进行息肉检测和表征。我们的代码和训练有素的模型可在https://github.com/capsuleendoscope/endol2h上找到。

Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics. Enhanced-resolution endoscopy has shown to improve adenoma detection rate for conventional endoscopy and is likely to do the same for capsule endoscopy. In this work, we propose and quantitatively validate a novel framework to learn a mapping from low-to-high resolution endoscopic images. We combine conditional adversarial networks with a spatial attention block to improve the resolution by up to factors of 8x, 10x, 12x, respectively. Quantitative and qualitative studies performed demonstrate the superiority of EndoL2H over state-of-the-art deep super-resolution methods DBPN, RCAN and SRGAN. MOS tests performed by 30 gastroenterologists qualitatively assess and confirm the clinical relevance of the approach. EndoL2H is generally applicable to any endoscopic capsule system and has the potential to improve diagnosis and better harness computational approaches for polyp detection and characterization. Our code and trained models are available at https://github.com/CapsuleEndoscope/EndoL2H.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源