论文标题
时域的几何代数力量理论
Geometric Algebra Power Theory in Time Domain
论文作者
论文摘要
在本文中,电气系统中的功率流是通过使用几何代数和希尔伯特变换在时间域中建模的。这种数学框架的使用克服了在造成的供应或不平衡负载下现有方法所显示的一些局限性。在这种情况下,在所有电路条件下,衍生的瞬时活性电流可能不是最低的RMS电流,并且可能包含比电源电压更高的谐波失真。此外,它们不能应用于单相系统。所提出的方法可用于正弦和非螺体电源,非线性载荷,单相系统,并以紧凑的配方提供有意义的工程结果。包括几个例子来证明所提出的理论的有效性。
In this paper, the power flow in electrical systems is modelled in the time domain by using Geometric Algebra and the Hilbert Transform. The use of this mathematical framework overcomes some of the limitations shown by the existing methodologies under distorted supply or unbalanced load. In such cases, the derived instantaneous active current may not be the lowest RMS current in all circuit conditions and could contain higher levels of harmonic distortion than the supply voltage. Moreover, they cannot be applied to single phase systems. The proposed method can be used for sinusoidal and non-sinusoidal power supplies, non-linear loads, single- and multi-phase systems, and it provides meaningful engineering results with a compact formulation. Several examples have been included to prove the validity of the proposed theory.