论文标题

Nigma Anonymous:独立于符号的推理引导机(系统描述)

ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine (system description)

论文作者

Jakubův, Jan, Chvalovský, Karel, Olšák, Miroslav, Piotrowski, Bartosz, Suda, Martin, Urban, Josef

论文摘要

我们描述了对饱和式自动化定理抛弃的梯度提升和神经指导的实现,该定理弃权不取决于跨问题的一致符号名称。对于提高梯度指导,我们通过考虑基于公式的编码来手动创建抽象的功能。对于神经指导,我们使用与符号无关的图神经网络(GNN)及其对术语和条款的嵌入。这两种方法是在E供者及其神秘学习引导框架中有效实现的。 为了提供GNN的竞争实时性能,我们开发了一种基于上下文的新方法来评估E.中的生成条款,并在GNN中共同评估了较大的批次,并且在大量已选择的条款(上下文)中,估计了他们在几个消息传递的几轮子集中估计其共同有用的子集。这意味着,由GNN进行的近似推理回合有效地与E内部进行的精确符号推理回合。这些方法是在MPTP大理论基准上评估的,并证明可以实现与最先进的符号方法的可比实时性能。这些方法还表现出很高的互补性,解决了大量硬米萨尔问题。

We describe an implementation of gradient boosting and neural guidance of saturation-style automated theorem provers that does not depend on consistent symbol names across problems. For the gradient-boosting guidance, we manually create abstracted features by considering arity-based encodings of formulas. For the neural guidance, we use symbol-independent graph neural networks (GNNs) and their embedding of the terms and clauses. The two methods are efficiently implemented in the E prover and its ENIGMA learning-guided framework. To provide competitive real-time performance of the GNNs, we have developed a new context-based approach to evaluation of generated clauses in E. Clauses are evaluated jointly in larger batches and with respect to a large number of already selected clauses (context) by the GNN that estimates their collectively most useful subset in several rounds of message passing. This means that approximative inference rounds done by the GNN are efficiently interleaved with precise symbolic inference rounds done inside E. The methods are evaluated on the MPTP large-theory benchmark and shown to achieve comparable real-time performance to state-of-the-art symbol-based methods. The methods also show high complementarity, solving a large number of hard Mizar problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源