论文标题
从命题插值得出的一阶插值
First-Order Interpolation Derived from Propositional Interpolation
论文作者
论文摘要
本文开发了一种连接命题和一阶插值的通用方法。实际上,存在合适的Skolemivation和Herbrand膨胀以及命题插值足以构建一阶室内固体。该方法是针对基于晶格的有限价值逻辑实现的,这是代表True的最高元素。结果表明,对于这些逻辑,插值是可决定的。
This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true. It is shown that interpolation is decidable for these logics.