论文标题
热网格中热负荷预测的潜在变量方法
A latent variable approach to heat load prediction in thermal grids
论文作者
论文摘要
在本文中,提出了一种新的地区能源系统中的热负荷预测方法。该方法使用名义模型来预测室外温度依赖的空间加热负载,以及数据驱动的潜在变量模型来预测时间依赖时间的残留热负荷。残留的热负荷主要来自空间供暖和通风的时间依赖性操作以及国内热水生产。最终的模型是根据超参数的实现来递归更新的,该实现会导致简约的模型,从而允许高计算性能。该方法应用于瑞典Lulea的单个多居式建筑物,使用相对较少的模型参数预测热载荷,并且很容易获得测量。将结果与使用人工神经网络的预测进行了比较,表明所提出的方法可以在验证案例中获得更好的预测准确性。此外,提出的方法通过使用可解释的物理模型表现出可解释的行为。
In this paper a new method for heat load prediction in district energy systems is proposed. The method uses a nominal model for the prediction of the outdoor temperature dependent space heating load, and a data driven latent variable model to predict the time dependent residual heat load. The residual heat load arises mainly from time dependent operation of space heating and ventilation, and domestic hot water production. The resulting model is recursively updated on the basis of a hyper-parameter free implementation that results in a parsimonious model allowing for high computational performance. The approach is applied to a single multi-dwelling building in Lulea, Sweden, predicting the heat load using a relatively small number of model parameters and easily obtained measurements. The results are compared with predictions using an artificial neural network, showing that the proposed method achieves better prediction accuracy for the validation case. Additionally, the proposed methods exhibits explainable behavior through the use of an interpretable physical model.