论文标题

Srruo薄膜中的水晶厅和水晶磁光效应$ _3 $

Crystal Hall and crystal magneto-optical effect in thin films of SrRuO$_3$

论文作者

Samanta, K., Ležaić, M., Merte, M., Freimuth, F., Blügel, S., Mokrousov, Y.

论文摘要

由最近观察到的Srruo $ _3 $ _3 $(SRO)在Srtio $ _3 $(STO)[001]基材上生长的超薄薄膜中的拓扑厅效应的动机,我们研究了磁场状态态和sro Ultra thin膜的磁场状态响应,这是通过SRO Ultra-Phin膜的反应,该膜通过Spin Mential功能(DFT)的差异。我们的发现表明,在SRO膜的单层极限中,Ru- $ t_ {2g} $状态的大能量分裂稳定了抗铁磁(AFM)绝缘磁接地状态。对于AFM基态,我们的浆果曲率计算预测掺杂时会产生较大的异常响应。从系统的对称分析中,我们发现,由于SRO单层中非磁原子(SR和O)的排列而导致的时间交流和晶体对称性破裂而产生的大型异常效应。我们将新兴的霍尔效应确定为Šmejkal等人术语中所谓的晶体大厅效应的明显表现。 ARXIV:1901.00445(2019),并证明它在有限的频率上持续,这是晶体磁光效应的表现。此外,我们发现AHE在铁磁SRO膜中也对晶体对称性破裂程度的巨大依赖性共同指出了在这种类型的系统中观察到的拓扑厅效应的出现的另一种解释。

Motivated by the recently observed topological Hall effect in ultra-thin films of SrRuO$_3$ (SRO) grown on SrTiO$_3$ (STO) [001] substrate, we investigate the magnetic ground state and anomalous Hall response of the SRO ultra-thin films by virtue of spin density functional theory (DFT). Our findings reveal that in the monolayer limit of an SRO film, a large energy splitting of Ru-$t_{2g}$ states stabilizes an anti-ferromagnetic (AFM) insulating magnetic ground state. For the AFM ground state, our Berry curvature calculations predict a large anomalous Hall response upon doping. From the systematic symmetry analysis, we uncover that the large anomalous Hall effect arises due to a combination of broken time-reversal and crystal symmetries caused by the arrangement of non-magnetic atoms (Sr and O) in the SRO monolayer. We identify the emergent Hall effect as a clear manifestation of the so-called crystal Hall effect in terminology of Šmejkal et al. arXiv:1901.00445 (2019), and demonstrate that it persists at finite frequencies which is the manifestation of the crystal magneto-optical effect. Moreover, we find a colossal dependence of the AHE on the degree of crystal symmetry breaking also in ferromagnetic SRO films, which all together points to an alternative explanation of the emergence of the topological Hall effect observed in this type of systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源