论文标题
电子模型的非扰动路径积分量化:麦克斯韦整合
Non-perturbative path integral quantization of the electroweak model: the Maxwell integration
论文作者
论文摘要
由于盒子图的快速增长$ aaaa $和$a_μ$的大幅度变化,因此,当在麦克斯韦势势$a_μ$上集成时,电动图模型的非扰动路径积分量化是明显的不稳定。 $z_μ$来自弱中性电流的向量部分。这些图是不可避免的,因为它们是有条件收敛的,并且必须在模型的精确欧几里得一环的有效作用中分离出来,这是由其费米的决定因素引起的。先前的QED计算其费尔米元素决定因素的大幅度变化,表明$ aaaa $ box图在此限制中取消。使用此结果表明,在Electroweak型号中,对于这些字段的叠加中的固定$Z_μ$的$A_μ$的大幅度变化取消了$ aaaa $和$ aaaz $图形,从而消除了该模型的非扰动量化的明显障碍。其余的否定顺序术语反对这种变化的有效作用的增长。它的计算需要了解通过$a_μ$的功能度量产生的四维磁场中带电费的结合状态的变性。
The non-perturbative path integral quantization of the electroweak model is confronted with an apparent instability when integrating over the Maxwell potential $A_μ$ due to the fast growth of the box graphs $AAAA$ and $AAAZ$ for large amplitude variations of $A_μ$. $Z_μ$ is from the vector part of the weak neutral current. These graphs are unavoidable because they are conditionally convergent and have to be isolated in the model's exact Euclidean one-loop effective action arising from its fermion determinants. A previous QED calculation of the large amplitude variation of its fermion determinant for a class of random potentials showed that the $AAAA$ box graph cancels in this limit. Using this result it is shown that within the electroweak model large amplitude variations of $A_μ$ for fixed $Z_μ$ in a superposition of these fields cancel the $AAAA$ and $AAAZ$ graphs, thereby removing an apparent obstacle to the model's non-perturbative quantization. A negative paramagnetic term in the remainder opposes the effective action's growth for such variations. Its calculation requires knowledge of the degeneracy of the bound states of a charged fermion in the four-dimensional magnetic fields generated by the functional measure of $A_μ$.