论文标题
解决方案对Navier-Stokes的存在和平滑度
Existence and smoothness of the solution to the Navier-Stokes
论文作者
论文摘要
分析的一个基本问题是确定在三个维度上是否存在针对Navier-Stokes方程的平滑解决方案。在本文中,我们将研究这个问题。 The Navier-Stokes equations are given by: $u_{it}(x,t)-ρ\triangle u_i(x,t)-u_j(x,t) u_{ix_j}(x,t)+p_{x_i}(x,t)=f_i(x,t)$ , $div\textbf{u}(x,t)=0$ with initial conditions $ \ textbf {u} | _ {(t = 0)\ bigcup \partialΩ} = 0 $。我们介绍了未知的向量功能:$ \ big(w_i(x,t)\ big)_ {i = 1,2,3}:u_ {it}(x,x,t) - ρ\ triangle u_i(x,x,x,t) - \ frac {dp(x,x,x,x,x,x,x,x,x,x,dx_i} {dx_i} = w_i} = $ u_i(x,0)= 0,$ $ u_i(x,t)\ mid _ {\partialΩ} = 0 $。该问题的解决方案$ u_i(x,t)$由:$ u_i(x,x,t)= \ int_0^t \int_Ω是绿色功能。我们考虑以下n-Stokes-2问题:找到解决方案$ \ textbf {w}(x,x,t)\ in \ textbf {l} _2(q_t),p(x,t):p_ {x_i}(x_i}(x,x,x,x,x,x,x,x,x,t) $ w_i(x,t)-g \ big(w_j(x,t)+\ frac {dp(x,x,t)} {dx_j} \ big)\ cdot g_ {x_j} \ big(w_i(w_i(w_i(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x) $q_t。$的任何地方v-功能$ \ textbf {p} _ {x_i}(x,t)$由v-功能$ \ textbf {w} _i(x,x,t)$定义。使用以下绿色函数的估计值:$ | g(x,t;ξ,τ)| \ leq \ frac {c} {(t-τ)^μ\ cdot | x-ξ|^{3-2μ}}}; | g_ {x}(x,x,t;ξ,τ)| \ leq \ frac {c} {(t-τ)^μ\ cdot | x-ξ|^{3-(2μ-1)}}}(1/2 <μ<1),$,我们从这个方程式中获得: $ w(t)<f(t)+b \ big(\ int_0^{t} \ frac {w(τ)} {(t-t-τ)^μ}dτ\ big)^2 $; $ w(t)= \ | \ textbf {w}(x,x,x,t)\ | _ {l_2(ω)},f(t)= \ | \ | \ | \ textbf {f}(x,x,x,x,t)\ | _ {l_2(ω)}。进一步使用by texte cretection cretection cretection cretection cretection。先验估计。通过Leray-Schauder的方法,这是证明解决方案的存在和独特性的先验估计。
A fundamental problem in analysis is to decide whether a smooth solution exists for the Navier-Stokes equations in three dimensions. In this paper we shall study this problem. The Navier-Stokes equations are given by: $u_{it}(x,t)-ρ\triangle u_i(x,t)-u_j(x,t) u_{ix_j}(x,t)+p_{x_i}(x,t)=f_i(x,t)$ , $div\textbf{u}(x,t)=0$ with initial conditions $\textbf{u}|_{(t=0)\bigcup\partialΩ}=0$. We introduce the unknown vector-function: $\big(w_i(x,t)\big)_{i=1,2,3}: u_{it}(x,t)-ρ\triangle u_i(x,t)-\frac{dp(x,t)}{dx_i}=w_i(x,t)$ with initial conditions: $u_i(x,0)=0,$ $u_i(x,t)\mid_{\partialΩ}=0$. The solution $u_i(x,t)$ of this problem is given by: $u_i(x,t) = \int_0^t \int_ΩG(x,t;ξ,τ)~\Big(w_i(ξ,τ) + \frac{dp(ξ,τ)}{dξ_i}\Big)dξdτ$ where $G(x,t;ξ,τ)$ is the Green function. We consider the following N-Stokes-2 problem: find a solution $\textbf{w}(x,t)\in \textbf{L}_2(Q_t), p(x,t): p_{x_i}(x,t)\in L_2(Q_t)$ of the system of equations: $w_i(x,t)-G\Big(w_j(x,t)+\frac{dp(x,t)}{dx_j}\Big)\cdot G_{x_j}\Big(w_i(x,t)+\frac{dp(x,t)}{dx_i}\Big)=f_i(x,t)$ satisfying almost everywhere on $Q_t.$ Where the v-function $\textbf{p}_{x_i}(x,t)$ is defined by the v-function $\textbf{w}_i(x,t)$. Using the following estimates for the Green function: $|G(x,t;ξ,τ)| \leq\frac{c}{(t-τ)^μ\cdot |x-ξ|^{3-2μ}}; |G_{x}(x,t;ξ,τ)|\leq\frac{c}{(t-τ)^μ\cdot|x-ξ|^{3-(2μ-1)}}(1/2<μ<1),$ from this system of equations we obtain: $w(t)<f(t)+b\Big(\int_0^{t}\frac{w(τ)}{(t-τ)^μ} dτ\Big)^2$; $w(t)=\|\textbf{w}(x,t)\|_{L_2(Ω)}, f(t)=\|\textbf{f}(x,t)\|_{L_2(Ω)}.$ Further, using the replacement of the unknown function by \textbf{Riccati}, from this inequality we obtain the a priori estimate. By the Leray-Schauder's method and this a priori estimate the existence and uniqueness of the solution is proved.