论文标题

NN-PARS:基于神经网络的电路模拟框架

NN-PARS: A Parallelized Neural Network Based Circuit Simulation Framework

论文作者

Abrishami, Mohammad Saeed, Ge, Hao, Calderon, Justin F., Pedram, Massoud, Nazarian, Shahin

论文摘要

晶体管几何形状的收缩以及综合电路的增加复杂性,显着加剧了非线性设计行为。这需要准确而快速的电路模拟,以满足设计质量和市场上的限制。使用查找表和/或封闭形式表达式的现有电路模拟器在分析具有数十亿晶体管的设计的非线性行为时,要么慢或不准确。为了解决这些缺点,我们提出了NN-PARS,这是基于神经网络(NN)和并行的电路仿真框架,并根据基础GPU并行处理功能,并具有优化的事件驱动的模拟任务计划,以最大程度地提高并发。 NN-PARS通过基于NN的计算任务代替了传统技术中所需的内存查询。实验结果表明,与最先进的基于电流的模拟方法相比,NN-PARS在大型电路中将模拟时间缩短了两个数量级以上。 NN-PARS还提供了信号波形计算的高精度水平,与HSPICE相比,$ 2 \%$错误。

The shrinking of transistor geometries as well as the increasing complexity of integrated circuits, significantly aggravate nonlinear design behavior. This demands accurate and fast circuit simulation to meet the design quality and time-to-market constraints. The existing circuit simulators which utilize lookup tables and/or closed-form expressions are either slow or inaccurate in analyzing the nonlinear behavior of designs with billions of transistors. To address these shortcomings, we present NN-PARS, a neural network (NN) based and parallelized circuit simulation framework with optimized event-driven scheduling of simulation tasks to maximize concurrency, according to the underlying GPU parallel processing capabilities. NN-PARS replaces the required memory queries in traditional techniques with parallelized NN-based computation tasks. Experimental results show that compared to a state-of-the-art current-based simulation method, NN-PARS reduces the simulation time by over two orders of magnitude in large circuits. NN-PARS also provides high accuracy levels in signal waveform calculations, with less than $2\%$ error compared to HSPICE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源