论文标题
CSM-NN:当前基于源模型的逻辑电路模拟 - 神经网络方法
CSM-NN: Current Source Model Based Logic Circuit Simulation -- A Neural Network Approach
论文作者
论文摘要
晶体管的微型化至5nm及以后,加上综合电路的复杂性的增加,显着加剧了短通道效应,以及对更多设计角和模式的需求分析和优化。模拟器需要对表现出非线性行为的电路时间,功率,噪声等相关的输出变量进行建模。在处理具有数十亿多个晶体管的电路时,现有的仿真和签名工具,基于封闭式表达式和查找表的组合不准确或缓慢。在这项工作中,我们提出了CSM-NN,这是具有优化神经网络结构和处理算法的可扩展模拟框架。 CSM-NN的目的是考虑到基础CPU和GPU并行处理功能,通过考虑所需内存查询和计算的延迟来优化仿真时间。实验结果表明,与在CPU上运行的最新源模型相比,CSM-NN将仿真时间缩短了$ 6 \ times $。在GPU上运行时,此加速度最多可提高$ 15 \ times $。与HSPICE相比,CSM-NN还提供高精度级别,$ 2 \%$错误。
The miniaturization of transistors down to 5nm and beyond, plus the increasing complexity of integrated circuits, significantly aggravate short channel effects, and demand analysis and optimization of more design corners and modes. Simulators need to model output variables related to circuit timing, power, noise, etc., which exhibit nonlinear behavior. The existing simulation and sign-off tools, based on a combination of closed-form expressions and lookup tables are either inaccurate or slow, when dealing with circuits with more than billions of transistors. In this work, we present CSM-NN, a scalable simulation framework with optimized neural network structures and processing algorithms. CSM-NN is aimed at optimizing the simulation time by accounting for the latency of the required memory query and computation, given the underlying CPU and GPU parallel processing capabilities. Experimental results show that CSM-NN reduces the simulation time by up to $6\times$ compared to a state-of-the-art current source model based simulator running on a CPU. This speedup improves by up to $15\times$ when running on a GPU. CSM-NN also provides high accuracy levels, with less than $2\%$ error, compared to HSPICE.