论文标题

HYPOML:基于假设的机器学习模型评估的视觉分析

HypoML: Visual Analysis for Hypothesis-based Evaluation of Machine Learning Models

论文作者

Wang, Qianwen, Alexander, William, Pegg, Jack, Qu, Huamin, Chen, Min

论文摘要

在本文中,我们提出了一种视觉分析工具,用于基于假设的机器学习评估(ML)模型。我们描述了一个新型的ML测试框架,该框架结合了传统的统计假设检验(经验研究中通常使用)与关于多个假设结论的逻辑推理。该框架定义了一种受控配置,用于测试许多关于“概念”或“特征”的额外信息以及如何受益或阻碍ML模型的一些额外信息。因为推理多个假设并不总是直接的,所以我们将HYPOML作为视觉分析工具提供,将多线程测试数据转化为视觉表示,以快速观察结论和测试数据和假设之间的逻辑流程。我们已将hypoml应用于假设概念的许多概念,以示意和解释的视觉分析,以进行视觉分析。

In this paper, we present a visual analytics tool for enabling hypothesis-based evaluation of machine learning (ML) models. We describe a novel ML-testing framework that combines the traditional statistical hypothesis testing (commonly used in empirical research) with logical reasoning about the conclusions of multiple hypotheses. The framework defines a controlled configuration for testing a number of hypotheses as to whether and how some extra information about a "concept" or "feature" may benefit or hinder a ML model. Because reasoning multiple hypotheses is not always straightforward, we provide HypoML as a visual analysis tool, with which, the multi-thread testing data is transformed to a visual representation for rapid observation of the conclusions and the logical flow between the testing data and hypotheses.We have applied HypoML to a number of hypothesized concepts, demonstrating the intuitive and explainable nature of the visual analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源