论文标题
球形腔中流体动力相互作用的有限大小的布朗颗粒的结构和动力学:球和气缸
Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: spheres and cylinders
论文作者
论文摘要
从生物学到工程的多个学科中,任意形状颗粒颗粒的限制悬浮液的结构和动力学是感兴趣的。理论研究通常受到远程颗粒颗粒和粒子壁力的复杂性的限制,包括多体波动的流体动力相互作用。在这里,我们报告了一项有关限制在球形腔中的球形和圆柱颗粒扩散的计算研究。我们依靠一种沉浸式的一般几何形状类似Ewald的方法来捕获润滑和远程流体动力学,并在狭窄的壁上包括适当的防滑条件。 Chebyshev多项式近似用于满足布朗悬浮液的波动散动定理。我们探讨了润滑,远程流体动力学,颗粒体积分数和形状如何影响颗粒的平衡结构和扩散。发现一旦粒子体积分数大于$ 10 \%$,粒子就会开始形成极大地影响粒子动态的分层聚集体。流体动力的相互作用通过诱导空间依赖的短期扩散系数,对颗粒扩散对墙壁的扩散的影响强烈影响颗粒扩散,并在长期粒子的迁移率中引起了颗粒扩散的影响 - 通过拥挤而引起的降低式状态。此处考虑的圆柱颗粒的不对称水平足以在分层结构中诱导定向顺序,降低扩散速率并促进在低粒子浓度下向拥挤的迁移率转变。我们的结果提供了细胞内球状和原纤维蛋白的扩散和分布的基本见解。
The structure and dynamics of confined suspensions of particles of arbitrary shape is of interest in multiple disciplines, from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and particle-wall forces, including many-body fluctuating hydrodynamic interactions. Here, we report a computational study on the diffusion of spherical and cylindrical particles confined in a spherical cavity. We rely on an Immersed-Boundary General geometry Ewald-like method to capture lubrication and long-range hydrodynamics, and include appropriate non-slip conditions at the confining walls. A Chebyshev polynomial approximation is used to satisfy the fluctuation-dissipation theorem for the Brownian suspension. We explore how lubrication, long-range hydrodynamics, particle volume fraction and shape affect the equilibrium structure and the diffusion of the particles. It is found that once the particle volume fraction is greater than $10\%$, the particles start to form layered aggregates that greatly influence particle dynamics. Hydrodynamic interactions strongly influence the particle diffusion by inducing spatially dependent short-time diffusion coefficients, stronger wall effects on the particle diffusion towards the walls, and a sub-diffusive regime --caused by crowding-- in the long-time particle mobility. The level of asymmetry of the cylindrical particles considered here is enough to induce an orientational order in the layered structure, decreasing the diffusion rate and facilitating a transition to the crowded mobility regime at low particle concentrations. Our results offer fundamental insights into the diffusion and distribution of globular and fibrillar proteins inside cells.