论文标题
利用影响转移学习在智能辅导系统中的行为预测
Leveraging Affect Transfer Learning for Behavior Prediction in an Intelligent Tutoring System
论文作者
论文摘要
在这项工作中,我们提出了一种基于视频的转移学习方法,以预测使用智能辅导系统(ITS)工作的学生的问题结果。通过分析学生的脸和手势,我们的方法可以预测学生从视频提要中回答问题的结果的结果。我们的工作是由预测结果的能力使辅导系统能够调整干预措施(例如提示和鼓励)并最终产生改善学生学习的能力的推动力。我们通过一个由68个会议组成的智能在线数学导师收集了一个大型的学生互动数据集,其中有54名个人解决了2,749个问题。该数据集是公开的,可在https://www.cs.bu.edu/faculty/betke/research/learning/上找到。使用此数据集,我们的转移学习挑战是在“野外”获得的图片源域中设计一个表示面部表达分析的任务,并将这种学识渊博的表示形式转移到在课堂环境中学生的网络摄像头视频中的人类行为预测的任务。我们开发了一种新颖的面部影响代表和一个用户个性化的培训计划,该方案释放了这种表示的潜力。我们设计了一个经常性神经网络的几种变体,该变体模拟了解决数学问题的学生的视频序列的时间结构。我们的最终模型被命名为ATL-BP,以影响行为预测的转移学习,比该新数据集上的最新方法的平均F评分相对增加了50%。
In this work, we propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS). By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed. Our work is motivated by the reasoning that the ability to predict such outcomes enables tutoring systems to adjust interventions, such as hints and encouragement, and to ultimately yield improved student learning. We collected a large labeled dataset of student interactions with an intelligent online math tutor consisting of 68 sessions, where 54 individual students solved 2,749 problems. The dataset is public and available at https://www.cs.bu.edu/faculty/betke/research/learning/ . Working with this dataset, our transfer-learning challenge was to design a representation in the source domain of pictures obtained "in the wild" for the task of facial expression analysis, and transferring this learned representation to the task of human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences of students solving math problems. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in mean F-score of 50% over the state-of-the-art method on this new dataset.