论文标题
谐波链中的热电导的精确溶液
Exact Solution for the Heat Conductance in Harmonic Chains
论文作者
论文摘要
我们为在不同温度下连接两个储层的谐波链沿谐波链中提供了精确的解决方案。在此模型中,终点对应于具有不同阻尼系数的布朗颗粒。热电导的这种分析表达涵盖了其从介观到非常长的一维量子链的行为,并在后一个示例中验证了热传输的弹道性质。这意味着缺乏古典和量子谐波链的傅立叶定律。我们还对系统模式进行了彻底的分析,这有助于我们令人满意地解释这些结果。
We present an exact solution for the heat conductance along a harmonic chain connecting two reservoirs at different temperatures. In this model, the end points correspond to Brownian particles with different damping coefficients. Such analytical expression for the heat conductance covers its behavior from mesoscopic to very long one-dimensional quantum chains, and validates the ballistic nature of the heat transport in the latter example. This implies the absence of the Fourier law for classical and quantum harmonic chains. We also provide a thorough analysis of the normal modes of system which helps us to satisfactorily interpret these results.