论文标题
星形棒的精度和一致性
Precision and consistency of astrocombs
论文作者
论文摘要
星形镜是理想的光谱仪校准器,其限制精度可以使用第二个独立的,星形射击系统得出。因此,我们分析来自欧洲南部天文台的竖琴光谱仪同时使用的两个星形镜(一个18 GHz和一个25 GHz)的数据。本文的第一个目的是量化特定星形射击达到的波长可重复性。第二个目的是测量独立的星形镜之间的波长校准一致性,即放置限制或测量任何可能的零点偏移。我们提出了三个主要发现,每个发现对系外行星的检测具有重要意义,这些检测具有不同的基本常数和红移漂移测量值。首先,波长校准程序很重要:与使用单个高阶多项式相比,在一个棘轮阶内使用多个分段多项式会导致波长明显更好。分段的多项式应用于用于精确光谱线位置测量的所有应用中。其次,我们发现更改星形棒会导致大量的零点偏移($ \ $ \ y 60 {\ rm cms}^{ - 1} $在我们的原始数据中被删除。第三,Astrocombs在一次曝光中达到$ \ lyssim 4 {\ rm cms}^{ - 1} $($ \ \ \ \ \%$上的$ \%$上的photon-limimimimimimimition Precision)和$ 1 {\ rm cmm cms}^{ - 1} $ a时,当时是在时间上超过一个小时的时间,以先前的成果,以前。因此,星形棒提供了检测地球类似物,测量基本常数和红移漂移的变化所必需的技术要求。
Astrocombs are ideal spectrograph calibrators whose limiting precision can be derived using a second, independent, astrocomb system. We therefore analyse data from two astrocombs (one 18 GHz and one 25 GHz) used simultaneously on the HARPS spectrograph at the European Southern Observatory. The first aim of this paper is to quantify the wavelength repeatability achieved by a particular astrocomb. The second aim is to measure wavelength calibration consistency between independent astrocombs, that is to place limits or measure any possible zero-point offsets. We present three main findings, each with important implications for exoplanet detection, varying fundamental constant and redshift drift measurements. Firstly, wavelength calibration procedures are important: using multiple segmented polynomials within one echelle order results in significantly better wavelength calibration compared to using a single higher-order polynomial. Segmented polynomials should be used in all applications aimed at precise spectral line position measurements. Secondly, we found that changing astrocombs causes significant zero-point offsets ($\approx 60{\rm cms}^{-1}$ in our raw data) which were removed. Thirdly, astrocombs achieve a precision of $\lesssim 4{\rm cms}^{-1}$ in a single exposure ($\approx 10\% $ above the measured photon-limited precision) and $1 {\rm cms}^{-1}$ when time-averaged over a few hours, confirming previous results. Astrocombs therefore provide the technological requirements necessary for detecting Earth-Sun analogues, measuring variations of fundamental constants and the redshift drift.