论文标题

Hecke和Casimir操作员Hilbert Maass形式的特征值的联合分布

Joint distribution of eigenvalues of Hecke and Casimir operators for Hilbert Maass forms

论文作者

Miatello, Roberto J., Villanueva, Angel D.

论文摘要

令$ f $为一个完全真实的数字字段,$ \ mathcal {o} _ {f} $整数环,$ \ mathfrak a $ and $ \ mathfrak i $ intectaal Ideasals,让$χ$ $ \ m arthbb {a} a} _f^a} _f^\ times/f^\ times/f^\ times/f^\ times $。 For each prime ideal $\mathfrak{p}$ in $\mathcal{O}_{F}$, $\mathfrak{p}\nmid \mathfrak{I}$ let $T_{\mathfrak{p}}$ be the Hecke operator acting on the space of Maass cusp forms on $ l^2(\ mathrm {gl} _ {2}(f)\ backslash \ mathrm {gl} _ {2}(\ mathbb {a} _f))$。在本文中,我们调查了Hecke运营商的联合特征值$ t _ {\ Mathfrak {p}} $和Casimir操作员的$ C_ {J {J} $在$ f $的每个Archimedean组件中,价格为$ 1 \ le J \ le J \ le J \ le d $。总而言之,我们证明,给定一个扩展的紧凑子集的家族$ω_{t} $ $ \ MATHBB {r}^{d} $作为$ t \ rightArrow \ rightArrow \ instrow \ inst $ i _ {\ mathfrak {\ mathfrak \ Mathfrak {i} $是$ f $的狭窄班级组中的一个广场,有许多自动形式的形式具有$ t _ {\ Mathfrak {\ mathfrak {p}} $ in $ i _ {\ m mathfrak {p}} $的特征{根据Plancherel度量分配的,在该地区$ω__{T} $的SATO-TATE度量并在该区域中具有Casimir特征值。

Let $F$ be a totally real number field, $\mathcal{O}_{F}$ the ring of integers, $\mathfrak a$ and $\mathfrak I$ integral ideals and let $χ$ a character of $\mathbb{A}_F^\times/F^\times$. For each prime ideal $\mathfrak{p}$ in $\mathcal{O}_{F}$, $\mathfrak{p}\nmid \mathfrak{I}$ let $T_{\mathfrak{p}}$ be the Hecke operator acting on the space of Maass cusp forms on $L^2(\mathrm{GL}_{2}(F) \backslash \mathrm{GL}_{2}(\mathbb{A}_F))$. In this paper we investigate the distribution of joint eigenvalues of the Hecke operators $T_{\mathfrak{p}}$ and of the Casimir operators $C_{j}$ in each archimedean component of $F$, for $1\le j \le d$. Summarily, we prove that given a family of expanding compact subsets $Ω_{t}$ of $\mathbb{R}^{d}$ as $t \rightarrow \infty$, and an interval $I_{\mathfrak{p}} \subseteq [-2,2]$, then, if $\mathfrak{p} \nmid \mathfrak{I}$ is a square in the narrow class group of $F$, there are infinitely many automorphic forms having eigenvalues of $T_{\mathfrak{p}}$ in $I_{\mathfrak{p}}$, distributed on $I_{\mathfrak{p}}$ according to a polynomial multiple of the Sato-Tate measure and having their Casimir eigenvalues in the region $Ω_{t}$, distributed according to the Plancherel measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源