论文标题

有效的Floquet Hamiltonians,用于定期驱动的双层石墨烯

Effective Floquet Hamiltonians for periodically-driven twisted bilayer graphene

论文作者

Vogl, Michael, Rodriguez-Vega, Martin, Fiete, Gregory A.

论文摘要

我们为扭曲的双层石墨烯提供了有效的浮球哈密顿量,该石墨烯是由圆形极化光驱动的两个不同驱动器,高频制度的不同机制。首先,我们考虑一种与频率小于带宽和弱幅度的实验相关的驱动方案,并得出有效的哈密顿量,该实验通过对称分析提供了对驱动器丰富效应的分析见解。我们发现,低频下的圆形光线可以选择性地降低AA型中层跳跃的强度,而使AB型不受影响。然后,我们考虑中间频率和中等强度驱动方案。我们提供了一种紧凑而准确的有效哈密顿量,我们与Van Vleck的扩张进行了比较,并证明它提供了确切的准耐药的明显改进的表示。最后,我们讨论了驱动器对对称性,费米速度和Floquet扁平带的差距的影响。

We derive effective Floquet Hamiltonians for twisted bilayer graphene driven by circularly polarized light in two different regimes beyond the weak-drive, high frequency regime. First, we consider a driving protocol relevant for experiments with frequencies smaller than the bandwidth and weak amplitudes and derive an effective Hamiltonian, which through a symmetry analysis, provides analytical insight into the rich effects of the drive. We find that circularly polarized light at low frequencies can selectively decrease the strength of AA-type interlayer hopping while leaving the AB-type unaffected. Then, we consider the intermediate frequency, and intermediate-strength drive regime. We provide a compact and accurate effective Hamiltonian which we compare with the Van Vleck expansion and demonstrate that it provides a significantly improved representation of the exact quasienergies. Finally, we discuss the effect of the drive on the symmetries, Fermi velocity and the gap of the Floquet flat bands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源