论文标题
基于机器学习的脑电图病理学的诊断
Machine-Learning-Based Diagnostics of EEG Pathology
论文作者
论文摘要
机器学习(ML)方法有可能自动化临床脑电图分析。它们可以分为基于功能的功能(具有手工制作的功能)和端到端方法(具有学习的功能)。先前关于脑电图病理解码的研究通常分析了有限数量的特征,解码器或两者。对于i)更详细的基于功能的脑电图分析,ii)对两种方法的深入比较,在这里我们首先开发一个基于特征的框架,然后将此框架与最新的端到端方法进行比较。为此,我们将提出的基于特征的框架和深层神经网络(包括EEG优化的时间卷积网络(TCN))应用于病理与非病理EEG分类的任务。为了进行良好的比较,我们选择了坦普尔大学医院(TUH)异常的EEG语料库(v2.0.0),其中包含大约3000张EEG录音。结果表明,提出的基于特征的解码框架可以在最先进的深神经网络上实现准确性。我们发现,这两种方法的准确性在81--86 \%的惊人狭窄范围内。此外,可视化和分析表明,两种方法都使用了数据的相似方面,例如时间电极位置的Delta和Theta带功率。我们认为,由于临床标签的评价不完善,当前二元脑电图病理解码器的准确性可能接近90 \%,并且这些解码器已经在临床上有用,例如在临床EEG专家很少见。我们使提出的基于功能的框架可用开源,从而为脑电图机器学习研究提供了新的工具。
Machine learning (ML) methods have the potential to automate clinical EEG analysis. They can be categorized into feature-based (with handcrafted features), and end-to-end approaches (with learned features). Previous studies on EEG pathology decoding have typically analyzed a limited number of features, decoders, or both. For a I) more elaborate feature-based EEG analysis, and II) in-depth comparisons of both approaches, here we first develop a comprehensive feature-based framework, and then compare this framework to state-of-the-art end-to-end methods. To this aim, we apply the proposed feature-based framework and deep neural networks including an EEG-optimized temporal convolutional network (TCN) to the task of pathological versus non-pathological EEG classification. For a robust comparison, we chose the Temple University Hospital (TUH) Abnormal EEG Corpus (v2.0.0), which contains approximately 3000 EEG recordings. The results demonstrate that the proposed feature-based decoding framework can achieve accuracies on the same level as state-of-the-art deep neural networks. We find accuracies across both approaches in an astonishingly narrow range from 81--86\%. Moreover, visualizations and analyses indicated that both approaches used similar aspects of the data, e.g., delta and theta band power at temporal electrode locations. We argue that the accuracies of current binary EEG pathology decoders could saturate near 90\% due to the imperfect inter-rater agreement of the clinical labels, and that such decoders are already clinically useful, such as in areas where clinical EEG experts are rare. We make the proposed feature-based framework available open source and thus offer a new tool for EEG machine learning research.