论文标题

DTControl:控制器表示的决策树学习算法

dtControl: Decision Tree Learning Algorithms for Controller Representation

论文作者

Ashok, Pranav, Jackermeier, Mathias, Jagtap, Pushpak, Křetínský, Jan, Weininger, Maximilian, Zamani, Majid

论文摘要

决策树学习是一种流行的分类技术,最常用于机器学习应用程序。最近的工作表明,决策树可用于简明地表示可证明的控制器。与使用查找表或二进制决策图的表示相比,决策树更小,可以解释。我们提出DTControl,这是一种易于扩展的工具,用于表示无内存的控制器作为决策树。我们对适用于10个案例研究的各种决策树学习算法进行了全面评估,该算法是由正确的构造控制器合成引起的。这些算法包括两种新技术,一种用于决策树学习中的任意线性二进制分类器,以及一种在决策树构建过程中确定控制器的新颖方法。尤其是后者非常有效,在5个案例研究上产生了决策树,并具有单位数量的决策节点。

Decision tree learning is a popular classification technique most commonly used in machine learning applications. Recent work has shown that decision trees can be used to represent provably-correct controllers concisely. Compared to representations using lookup tables or binary decision diagrams, decision trees are smaller and more explainable. We present dtControl, an easily extensible tool for representing memoryless controllers as decision trees. We give a comprehensive evaluation of various decision tree learning algorithms applied to 10 case studies arising out of correct-by-construction controller synthesis. These algorithms include two new techniques, one for using arbitrary linear binary classifiers in the decision tree learning, and one novel approach for determinizing controllers during the decision tree construction. In particular the latter turns out to be extremely efficient, yielding decision trees with a single-digit number of decision nodes on 5 of the case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源