论文标题

关于量子整合性索引的注释

Notes on index of quantum integrability

论文作者

Tian, Jia, Hou, Jue, Chen, Bin

论文摘要

在\ cite {kms}中提出了量子集成性索引。它通过使用保形对称性来系统地化Goldschmidt和Witten的操作员计数参数\ Cite {Gw}。在这项工作中,我们计算对称coset模型$ {su(n)}/{so(n)} $和$ SO(2n)/{so(so(n)\ times so(n)} $的量子集成性索引。这些理论的索引都是非阳性的,除了$ {so(4)}/{so(2)\ times so(2)} $的情况。此外,我们将分析扩展到具有费米子的理论,并考虑一个具体的理论:$ \ mathbb {cp}^n $模型与无质量的dirac fermion相结合。我们发现,这类模型的索引也是非阳性的。

A quantum integrability index was proposed in \cite{KMS}. It systematizes the Goldschmidt and Witten's operator counting argument \cite{GW} by using the conformal symmetry. In this work we compute the quantum integrability indexes for the symmetric coset models ${SU(N)}/{SO(N)}$ and $SO(2N)/{SO(N)\times SO(N)}$. The indexes of these theories are all non-positive except for the case of ${SO(4)}/{SO(2)\times SO(2)}$. Moreover we extend the analysis to the theories with fermions and consider a concrete theory: the $\mathbb{CP}^N$ model coupled with a massless Dirac fermion. We find that the indexes for this class of models are non-positive as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源