论文标题

解决有限字段的一些仿射方程

Solving Some Affine Equations over Finite Fields

论文作者

Mesnager, Sihem, Kim, Kwang Ho, Choe, Jong Hyok, Lee, Dok Nam

论文摘要

令$ l $和$ k $为两个整数,以便$ l | k $。定义$ t_l^k(x):= x+x^{p^l}+\ cdots+x^{p^{p^{l(k/l-2)}}+x^{p^{p^{l(k/l-1)}}} $和$ s_l^k(x):= x-x^{p^l}+\ cdots+(-1)^{(k/l-1)} x^{p^{p^{l(k/l-1)} $,其中$ p $是任何prime。 本文将$ \ gf {p^n} $中所有解决方案的明确表示向仿射方程$ t_l^{k}(x)= a $ and $ s_l^{k}(x)= a $,$ a \ in \ in \ gf gf {p^n} $。对于最近在\ cite {mkcl2019}中解决的情况,本文的结果揭示了另一种解决方案。

Let $l$ and $k$ be two integers such that $l|k$. Define $T_l^k(X):=X+X^{p^l}+\cdots+X^{p^{l(k/l-2)}}+X^{p^{l(k/l-1)}}$ and $S_l^k(X):=X-X^{p^l}+\cdots+(-1)^{(k/l-1)}X^{p^{l(k/l-1)}}$, where $p$ is any prime. This paper gives explicit representations of all solutions in $\GF{p^n}$ to the affine equations $T_l^{k}(X)=a$ and $S_l^{k}(X)=a$, $a\in \GF{p^n}$. For the case $p=2$ that was solved very recently in \cite{MKCL2019}, the result of this paper reveals another solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源