论文标题
分布式和自适应快速多极在三个维度
Distributed and Adaptive Fast Multipole Method In Three Dimensions
论文作者
论文摘要
我们在三个空间维度中开发了自适应快速多极方法的一般分布式实现。我们依靠平衡的自适应空间离散化类型,该离散化支持高度透明且完全分布的实现。复杂性分析表明,高达512个核心和10亿个源点验证它们的缩放属性和数值实验可验证它们。控制算法的参数受深入的实验,对输入参数的性能响应意味着总体实现非常适合自动调整。
We develop a general distributed implementation of an adaptive fast multipole method in three space dimensions. We rely on a balanced type of adaptive space discretisation which supports a highly transparent and fully distributed implementation. A complexity analysis indicates favorable scaling properties and numerical experiments on up to 512 cores and 1 billion source points verify them. The parameters controlling the algorithm are subject to in-depth experiments and the performance response to the input parameters implies that the overall implementation is well-suited to automated tuning.