论文标题
$ S+ID $超导体中的Skyrmionic链条和格子
Skyrmionic chains and lattices in $s+id$ superconductors
论文作者
论文摘要
我们在$ S+ID $超导体中报告特征性涡旋配置,随时间逆转对称性破坏,暴露于磁场。 $ s+id $状态中的涡流往往在$ s-$和$ d $ $ d $ wave冷凝物之间具有相反的相位绕组。我们发现,这种特殊的功能以及$ s-$和$ d $ wave对称性之间的竞争会导致三种不同类别的涡旋配置。当$ s- $或$ d- $冷凝物绝对占主导地位时,涡流形成常规晶格。但是,当一种冷凝物相对占主导地位时,涡旋在表现出纯净特征的链中组织起来,将$ s \ pm iD $订单参数的手性成分分开为链内外的域。即使在高磁场处,这种天空链也被发现稳定。当$ s- $和$ d-$冷凝物具有可比的强度时,涡流中的芯子分成两个手性零件,以形成成熟的天空,即带有整数拓扑的无矿拓扑结构,在晶格中组织。我们提供所有状态的特征磁场分布,从而在例如扫描大厅探测和扫描鱿鱼实验。这些独特的涡流状态与高t $ _C $ cuprate和基于铁的超导体相关,在这种超导体中,竞争配对对称性的相对强度预计将通过温度和/或掺杂水平调节,并可以帮助区分$ s+is $ s+s+s+s+id $ id $ $ $ $ $超导阶段。
We report characteristic vortex configurations in $s+id$ superconductors with time reversal symmetry breaking, exposed to magnetic field. A vortex in the $s+id$ state tends to have an opposite phase winding between $s-$ and $d-$wave condensates. We find that this peculiar feature together with the competition between $s-$ and $d-$wave symmetry results in three distinct classes of vortical configurations. When either $s-$ or $d-$ condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the $s \pm id$ order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When $s-$ and $d-$ condensates have a comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e. coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in e.g. scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T$_c$ cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish $s+is$ and $s+id$ superconducting phases.